
Problem Set 1: Signal propagation in the large-width limit

Depth First Learning Week 2

Problem 1: NN Signal propagation framework

In this problem, we will work with the basic framework for analyzing signal propagation in a feedforward
neural networks as the width of the network’s hidden layers grows towards infinity.

To set up the notation, let x0 ∈ RN be the (vector-valued) input to the network. Each layer, l, of
the network, is a function from RN → RN defined via the two equations:

hl = W lxl−1 + bl (1)

xl = φ(hl) (2)

Here xl−1 is the input to the layer, xl is the output, W l is an N×N matrix containing the layer’s weights,
and bl is an N -dimensional vector containing the layer’s biases. The function φ is the nonlinearity (e.g.,
sigmoid, ReLU, etc.) used by the network. We sometimes call the inputs to the nonlinearity (hl) the
pre-activations, and we call the outputs of the nonlinearity (which are also the outputs of the layer) the
activations.

Note here that we are considering a specific neural network architecture in which the number of
hidden units does not vary from layer to layer.

(a) To initialize the network, we usually draw the weights and biases randomly from some distribution.
Let’s ignore the bias term for now (i.e. set bl = 0 for all layers l). Since the pre-activations hl

are functions of the random variables, they themselves are (vector-valued, N -dimensional) random
variables. We want to understand what we can say about the distribution of the hl’s as we move
through layers of the network, i.e. as a function of l.

Suppose we initialize each weight matrix W l from a zero-mean Gaussian with variance σ2, i.e.
W l ∼ N (0, σ2). For simplicity, assume the nonlinearity is just the identity function; this way, we
can study the special case of purely linear networks, similar to linear regression. We’ll relax this
assumption in subsequent problems.

What are the mean and variance of the distribution of a single-component, hli, in terms
of the mean and the variance of the the previous layer’s preactivations, hl−1i ?
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Solution:
First calculate the mean, denoted 〈hli〉:

hli =
∑
j

W l
ijx

l−1
j → 〈hli〉 =

∑
j

〈W l
ijx

l−1
j 〉 (linearity of expectation)

→ 〈hli〉 =
∑
j

〈W l
ij〉〈xl−1j 〉 (W independent of x)

→ 〈hli〉 = 0 (W is zero-mean)

Now that the mean is known to be zero, we simply have to calculate the second moment
〈(hli)2〉 to get the variance:

〈(hli)2〉 =

〈∑
j

W l
ijx

l−1
j

2〉

=

〈∑
jj′

W l
ijW

l
ij′x

l−1
j xl−1j′

〉
=
∑
jj′

〈W l
ijW

l
ij′〉〈xl−1j xl−1j′ 〉 (W and x independent)

=
∑
j

〈(W l
ij)

2〉〈(xl−1j )2〉 (entries of W independent)

= σ2
∑
j

〈(xl−1j )2〉 (weights have unit variance)

= σ2
∑
j

〈(hl−1j )2〉 (assumption that nonlinearity is just the identity)

= Nσ2Var(hl−1i ) (symmetry)

So we find that the variance of any given neuron’s pre-activation grows (or shrinks) by a
factor of Nσ2 at each layer.

(b) You should find in the previous part that the mean of the distribution of hli is always zero, but that
each layer of the network multiplies the variance of the distribution by a factor of Nσ2. Typically,
the variance of the distribution of pre-activations is a proxy for how much of the nonlinearity we’re
making use of (e.g. for the sigmoid, if the variance is very small, we’re basically in the linear
region of the nonlinearity). To be able to vary the number of layers in a network and not have the
behavior change too much, we’d like to have an initialization strategy which keeps the variance
of the hl distribution the same as we change the number of layers. Clearly, our current strategy
(W l ∼ N (0, σ2)) doesn’t accomplish this.

Suggest a simple modification of the initialization strategy which would achieve this
goal.

Solution Instead of initializing with a fixed variance σ2 which doesn’t depend on the
number of hidden units in the layer, we can pick some variance σ2

w and scale this variance
by the number of hidden units in the layer, i.e. we take the initialization strategy W l ∼
N (0, σ2

w/N).

(c) Now let’s add back in the bias term. Imagine that we initialize according to a simple zero-mean
Gaussian, where the variance (as for the weights in part (a)) was independent of the number of
hidden units N , that is bl ∼ N (0, σ2

b ).

Does this initialization suffer from the same problem as the weight initialization de-
scribed in part (b)? If so, how can we fix it?
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Solution No, in this case the problem is not there, because each neuron’s pre-activation
only depends on a single bias term, i.e.

〈(hli)2〉 = 〈(W l
ijx

l−1
j )2〉+ 〈(bli)2〉 (3)

And this does not change in the same way as the number of layers grows.

Problem 2: N →∞ and the mean-field approximation

In this problem, we use the knowledge we gained in problem 1 to properly choose to initialize the weights
and biases according to W l ∼ N (0, σ2

w/N) and bl ∼ N (0, σ2
b ). We’ll investigate some techniques that

will be useful in understanding precisely how the network’s random initialization influences what the net
does to its inputs; specifically, we’ll be able to take a look at how the depth of the network together with
the initialization governs the propagation of an input point as it flows forward through the network’s
layers.

(a) A natural property of input points to study as the input flows through the net layer
by layer is its length. Intuitively, this is closely related to how the net transforms the
input space, and to how the depth of the net relates to that transformation. Compute
the length ql of the activation vector outputted by layer l. When considering non-
rectangular nets, where layer l has length Nl, we want to distinguish this activation
norm from the width of individual layers, so what’s a more appropriate quantity we
can track to understand how the lengths of activation vectors change in the net?

Solution The length is simply the Euclidean magnitude, i.e.
∑N

i=1(hli)
2. We can stabilize

this quantity, especially when N differs across layers, by normalizing:

ql =
1

Nl

Nl∑
i=1

(hli)
2

(b) What probabilistic quantity of the neuronal activations does ql approximate (with the
approximation improving for larger N)?

Hint: recall that all neuronal activations hli are zero-mean, and consider the definition of ql from
part (a) in terms of the empirical distribution of hli.

Solution
ql is the second moment of the empirical distribution of layer l activations, and hence
approximates the variance. Indeed, as N → ∞, the empirical average can be written
ql = E

(
(hli)

2
)

= Var(hli).

(c) Calculate the variance of an individual neuron’s pre-activations, that is, the variance
of hli. Your answer should be a recurrence relation, expressing this variance in terms
of hl−1 (and the parameters σw and σb).

(Note: You basically did this in problem 1; the differences here are just that the weights are
initialized slightly differently and that the bias term exists, and now the noninearity is not just he
identity)
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Solution
Because the means of both the weight and bias distributions are zero, to calculate the
variance we just need to calculate the second moment. We can use the fact that the weights
and biases are initialized independently, so that the variance of hli is the sum of a bias term
and a variance term:

〈(hli)2〉 =

〈∑
j

W l
ijx

l−1
j

2〉

=

〈∑
jj′

W l
ijW

l
ij′x

l−1
j xl−1j′

〉
+ 〈(bli)2〉

=

〈∑
jj′

W l
ijW

l
ij′x

l−1
j xl−1j′

〉
+ σ2

b

=
σ2
w

N

∑
j

〈(xl−1j )2〉+ σ2
b

= σ2
w〈(xl−1)2〉+ σ2

b

= σ2
w〈φ(hl−1)2〉+ σ2

b

(d) Now consider the limit that the number of hidden neurons, N , approaches infinity.

Use the central limit theorem to argue that in this limit, the pre-activations will be
zero-mean Gaussian distributed. Be explicit about the conditions under which this
result holds.
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Solution
The basic idea here is to use the central limit theorem since the pre-activation is a sum of
a large number of random variables, i.e.:

hli =

N∑
j

W l
ijx

l−1
j + bli. (4)

There are N terms in the sum, so as N goes to infinity, we should have a sum of a large
number of random variables which should be well-approximated by a Gaussian.
However, there are a few things we need to be careful of:

i CLT can show that the sum
∑N

j W l
ijx

l−1
j is Gaussian-distributed, but there is still

the bias term bli. So we do have to assume that the bias term is Gaussian-distributed
as well.

ii In order to use CLT, we need each of the variables being added to have finite vari-
ance. These individual variables are W l

ijx
l−1
j . By construction the weights have finite

variance; what about the previous layer’s activations, xl−1j ? Unless the activation
function φ is pathological, if we assume that the previous-layer pre-activations have
finite variance, there should not be a problem here. In fact, if we just assume that
the input distribution, i.e. x0, has finite variance, all the layers’ activations do too.
Certainly the commonly used activation functions sigmoid, ReLU, etc. cannot turn a
finite-variance sample of pre-activations into an infinite-variance sample of activations.

iii In order to use the CLT, we also need each of the variables being added to have
identical distributions. This is true by symmetry.

iv The final condition for use of CLT is that the variables being added are all independent.
Taking another look at the definition of ql,

ql =
1

N

N∑
i=1

(hli)
2

we want to show that each hli is independent (from which the independence of their
squares follows). Each hli is in turn defined

hli =

N∑
j=1

W l
ijφ(hl−1j ) + bli

By assumption, W l
ij and bli are independent from each other and, over all i, j, from any

quantities in previous layers, including φ(hl−1j ). But are the W l
ij independent of the

hl−1j ? To justify this, observe that we can view the sum above as a linear combination

of the random variables W l
ij ; even though, technically, the linear combination is also

over random variables φ(hl−1j ), the key is that over 1 ≤ i ≤ N , all the hl−1j ’s are
the same. In other words, each neuronal activation in layer l depends on the same
exact realization of the random variables that are the activations of the previous layer.
So, hli is essentially a linear combination of the (independent) W l

ij with deterministic
weights, at least with respect to i. So, we can justify the use of the CLT in analyzing
limN→∞ ql.

(e) With this zero-mean Gaussian approximation of ql, we have a single parameter characterizing this
aspect of signal propagation in the net: the variance, ql, of individual neuronal activations (a proxy
for squared activation vector lengths). Let’s now look at how this variance changes from layer to
layer, by deriving the relationship between ql and ql−1.

In part (c), your answer should have included a term 〈(xl−1)2〉. In terms of the activa-
tion function φ and the variance ql−1, write this expectation value as an integral over
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the standard Gaussian measure.

Solution
Since xl−1i = φ(hl−1i ), we can write the variance 〈(xl−1)2〉 as

〈(xl−1)2〉 = 〈φ(hl−1)2〉

=

∫
R
dx φ(x)2 phl−1(x),

where phl−1(x) is the pdf of the pre-activations hl−1. By assumption this is a zero-mean
Gaussian of variance ql−1, i.e.

phl−1(x) =
1√

2πql−1
e
− x2

2ql−1 .

This can be written in terms of the standard Gaussian distribution ρ(x) via the change of
variables

phl−1(x) =
1√
ql−1

ρ(x/
√
ql−1),

meaning that the variance 〈(xl−1)2〉 becomes

〈(xl−1)2〉 =
1√
ql−1

∫
R
dx φ(x)2 ρ(x/

√
ql−1).

Let y = x/
√
ql−1, then

〈(xl−1)2〉 =

∫
R
dy φ(y

√
ql−1)2 ρ(y).

Use this result to write a recursion relation for ql in terms of ql−1, σw, and σb.

Solution
We just plug in, to get

ql = σ2
w

∫
R
dy φ(y

√
ql−1)2 ρ(y) + σ2

b

Problem 3: Fixed points and stability

In the previous problem, we found a recurrence relation relating the length of a vector at layer l of a
network to the length of the vector at the previous layer, l − 1 of the network. In this problem, we are
interested in studying the properties of this recurrence relation. In the Resurrecting the sigmoid paper,
the results of this problem are used to understand at which bias point to evaluate the Jacobian of the
input-output map of the network. For more information on this topic, see either of the two papers which
are suggested reading for this week:

• Exponential expressivity in deep neural networks through transient chaos

• Deep information propagation

Note that in this problem, we are just taking the recurrence relation as a given, i.e. we do not need to
worry about random variables or probabilities; all of that went into determining the recurrence relation.
Instead, we’ll use tools from the theory of dynamical systems to investigate the properties - in particular,
the asymptotics - of this recurrence relation.

(a) A simple example of a dynamical system is a recurrence defined by some initial value x0 and a
relation xn = f(xn−1) for all n > 0. This system defines the resulting sequence xn. Sometimes,
these systems have fixed points, which are values x∗ such that f(x∗) = x∗.
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If the value of the system, xm, at some time-step m, happens to be a fixed point x∗,
what is the subsequent evolution of the system?

Solution
Since f(x∗) = x∗, for all times greater than m, the system simply stays at x∗.

(b) For the recurrence relation you derived in the previous problem, what is the equation
which a fixed-point of the variance, q∗, must satisfy?

Under some conditions (i.e. for some values of σw and σb), the value q∗ = 0 is a fixed
point of the system. What are these conditions?

Solution
A fixed point has to satisfy

q∗ = σ2
w

∫
R
φ
(
ρ
√
q∗
)2

dρ+ σ2
b (5)

where dρ is the standard Gaussian measure. If σb = 0, i.e. there is no bias term, and the
nonlinearity has a zero y-intercept, then there is a trivial fixed point of q∗ = 0.

(c) Now let us be concrete, and look at the recurrence relation in the special case of a nonlinearity φ(h)
which is both monotonically increasing and satisfies φ(0) = 0. Note that both of the nonlinearities
considered in the paper we are studying, the tanh and ReLU nonlinearities, satisfy this property.

Show that those two properties (monotonicity and φ(0) = 0) imply that the length
map ql(ql−1) is monotonically increasing.

Solution
To prove that the function is monotonically increasing with its argument q, we take the
derivative:

f(q) = σ2
w

∫
R
φ(ρ
√
q)2 dρ+ σ2

b

f ′(q) =
σ2
w√
q

∫
R
φ(ρ
√
q)φ′(ρ

√
q)ρdρ

The derivative is positive since by assumption φ′ is positive everywhere, and φρ is also
positive everywhere. So the function is monotonically increasing.
Optional: Show that these two properties imply that the length map ql(ql−1) is
a concave function.
(Note: We have not managed to prove this ourselves (and not for lack of trying!), so feel
free to skip)

Solution

What is the maximum number of times any concave function can intersect the line
y = x? What does this imply about the number of fixed points the length map ql(ql−1)
can have?
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Solution
Note that since a fixed point is defined as a point, x∗, such that f(x∗) = x∗, graphically
the fixed point can be found from the intersection of the length map ql(ql−1) with the line
y = x.
If you think about the definition of a concave function (specifically, the version of the
definition which states that beween any two points x = a and x = b, the graph of the
function must lie above the line defined by f(a) and f(b)), you will realize that a concave
function cannot intersect any line more than twice. Thus, concavity implies that the function
can have at most two fixed points.

(d) Let’s be concrete now and consider the nonlinearity to be a ReLU.

Compute (analytically) the length map ql = f(ql−1), which will also depend on σw and
σb. For what values of σw and σb does the system have fixed point(s)? How does the
value of the fixed point depend on σw and σb?

Solution
Starting from

f(q) = σ2
w

∫
R
φ(ρ
√
q)2 dρ+ σ2

b , (6)

and explicitly inserting the nonlinearity φ gives

f(q) = σ2
w

∫ ∞
0

ρ2q dρ+ σ2
b . (7)

Note that since the ReLU nonlinearity is zero when the argument is zero and just the
identity function when the argument is greater than zero, we can take its effect into account
simply by changing the above limits of integration so that we only integrate over the region
in which the argument is positive. Now we can pull q out of the integral,

f(q) = qσ2
w

∫ ∞
0

ρ2 dρ+ σ2
b , (8)

and to evaluate the integral, note that by symmetry of the Gaussian distribution, it’s half
of what it would be if we had the limits from −∞ to ∞, in which case it would just be the
variance of a standard Gaussian, and so

f(q) = q
σ2
w

2
+ σ2

b . (9)

The important things to note here are that because f(q) is a simple linear function, there
is at most a single fixed point of the system. If σ2

b is zero, that fixed point is at q = 0. If
σ2
b > 0, then there is a fixed point only if σw <

√
2. Otherwise, the system does not have

any fixed point. This is a qualitative difference from the tanh case, in which there is always
a fixed point.
A slightly strange case is when σw =

√
2 exactly, and σb = 0. In this case, the recurrence

relation gives ql(ql−1) = ql−1, meaning that every point is a fixed point.

(e) Now let’s consider the sigmoid nonlinearity φ(h) = tanh(h). In this case the length map cannot be
computed analytically, but it can be done numerically.

Numerically plot the length map, ql = f(ql−1), for a few values of σw and σb in the
following regimes: (i) σb = 0 and σw < 1, (ii) σb = 0 and σw > 1, and (iii) σb > 0.
Describe qualitatively the fixed points of the map in each regime.
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Solution
The following Python code should work:

import numpy as np
import s c ipy . i n t e g r a t e as i n t e g r a t e

def in tegrand ( x ) :
gauss ian = np . s q r t (2 ∗ np . p i ) , −np . in f , np . i n f ) ∗ np . exp (−0.5 ∗ x∗∗2)
return np . tanh ( x ∗ np . s q r t ( q ))∗∗2 ∗ gauss ian

def f i n t ( q ) :
r e s u l t = i n t e g r a t e . quad ( integrand )
return r e s u l t [ 0 ]

def lengthmap (q , sigma w , sigma b ) :
return sigma w ∗∗2 ∗ f i n t ( q ) + sigma b ∗∗2

The behavior that should be seen is the following, as described in the transient chaos paper
(ignoring the parts about stability because we haven’t covered that yet. See next part of
the problem):
For σb = 0 and σw < 1, the only intersection is at q∗ = 0. In this bias-free, small weight
regime, the network shrinks all inputs to the origin. For σw > 1 and σb = 0, the q∗ = 0 fixed
point becomes unstable and the length map acquires a second nonzero fixed point, which is
stable. In this bias-free, large weight regime, the network expands small inputs and contracts
large inputs. Also, for any nonzero bias b, the length map has a single stable non-zero fixed
point. In such a regime, even with small weights, the injected biases at each layer prevent
signals from decaying to 0.

(f) Let’s now talk about the stability of fixed points. In a dynamical system, once the system reaches
(or starts at) a fixed point, by definition it can never leave. But what happens if the system gets or
starts near a fixed point? In real physical systems, this question is very relevant because physical
systems almost always have some noise which pushes the system away from a fixed point.

In general, the fixed point can be either stable or unstable. For a stable fixed point, initializing the
system near the fixed point will result in behavior which converges to the fixed point, i.e reducing
the magnitude of the perturbation away from the fixed point. Conversely, for an unstable fixed
point, the system initialized nearby will be repelled from the fixed point.

Use the derivative of the length map at a fixed point to derive conditions on the
stability of the fixed point.

Solution If the absolute value of the derivative df
dx , evaluated at the fixed point x∗, is less

than 1, then the system is stable. This can be seen from considering initializing the system
near the fixed point, say at x∗+ ∆x. After going through the length map, the value will be

f(x∗ + ∆x) ≈ f(x∗) + f ′(x∗)∆x

= x∗ + f ′(x∗)∆x

So the deviation from the fixed point x∗ has changed to f ′(x∗)∆x. If the magnitude of
f ′(x∗) is less than 1, then the magnitude of this deviation is lower than ∆x, the system is
getting closer to the fixed point, and the fixed point is said to be stable.
Conversely, if the magnitude of f ′(x∗) is greater than 1, then the deviations away from
equilibrium grow, and the equilibrium is unstable.

(g) With this understanding of stability, revisit your result in part (e) for the tanh nonlinearity.

Specifically, discuss the stability of the fixed points in each of the three regimes. You
can estimate the derivative of the length map by looking at the graphs.
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Solution
See the italicized paragraph in the solutions above, from the transient chaos paper. In
regime (i), there is a single fixed point, q∗ = 0, and it is stable. In regime (ii), there are two
fixed points, q∗ = 0 (unstable) and some other positive value (stable), and in regime (iii),
there is only a positive fixed point, which is stable.

(h) Do the same stability analysis for the ReLU network.

Solution In the σb = 0 case, where the only fixed point is at q = 0, that point is stable if σw <
√

2
(because then the slope of the line is less than unity) and unstable if σw >

√
2. Even for non-zero

σb, the fixed point (which will now be non-zero) is stable if σw <
√

2.

The slightly strange case is when σw =
√

2 exactly, and σb = 0. In this case, the recurrence relation
gives ql(ql−1) = ql−1, meaning that every point is a fixed point. In this case, the fixed points are
neither stable nor unstable, since perturbations from them will neither grow or shrink.

(i) (Optional) You should have found above that the both the ReLU and tanh systems
never had more than one stable fixed point. Show that this is a consequence of the
concavity of the length map.

Hint: You can just draw a picture for this one. Consider using the fact that the length map is
concave, which we discussed in part (c).

Solution

Having two stable fixed points would mean having two intersection points with the line y = x at
which the slope of the function is less than unity. But this means that in both cases we approach
the function from above, which means that there must have been a third intersection point in the
middle. But we already proved that because of the concavity of the length map, the system can
have at most two fixed points.

Problem 4: Correlation maps

In the previous problem, we discovered a very interesting property of wide neural networks: the existence
of fixed points of activation vector lengths. In this problem, we will explore a similar analysis for correla-
tions between activations due to different inputs to the network and connect this to vanishing/exploding
gradients.

Define the correlation ql12 between two inputs x0,1 and x0,2 at the lth layer of the network via the
following inner product:

ql12 =
1

NL

Nl∑
i=1

hli(x
0,1)hli(x

0,2), (10)

This is an important quantity to study, since the effect of the net on inputs that are initially highly
correlated (or are not) is relevant to its smoothness.

(a) As in the previous problem, though the quantity ql12 is defined for a specific realization of the net-
work, averaged over all neurons, we can use the self-averaging assumption treat this as an estimate
of a probabilistic quantity which characterizes a single neuron but averaged over realizations of the
network.

What is this quantity (it is a quantity that comes up quite often when dealing with
correlated random variables)?

10



Solution
The expression on the right hand side of the given equation is an empirical expectation of
the quantity

〈hli(x0,1)hli(x
0,2)〉. (11)

Since the random variables hli(x
0,1) and hli(x

0,2) are zero-mean, the quantity above is simply
the covariance between the neuron’s pre-activations corresponding to each of the inputs.

(b) Now we want to find a recurrence relation to describe the behavior of ql12 as we go through the
network.

Show that

C
(
cl−112 , ql−111 , ql−122 |σw, σb

)
= ql12 ≡ σ2

w

∫
R
Dz1Dz2φ (u1)φ (u2) + σ2

b

u1 =

√
ql−111 z1, u2 =

√
ql−122

[
cl−112 z1 +

√
1−

(
cl−112

)2
z2

]
,

where Dz1 and Dz2 indicate integration with respect to two independent standard
normal (Gaussian) variables z1 and z2. Here cl12 ≡ ql12(ql11q

l
22)−1/2 is the normalized

covariance, also known as the Pearson correlation coefficient.

Hint: Don’t be scared by the ugly-looking definitions of u1 and u2. This is just done so that we can
have the integral over independent Gaussians. Once you have an expression in terms of dependent
Gaussians, a simple change-of-variables should get the result you see above.

Solution

Cov(u1, u2) = E(u1u2) = E
(√

ql−111 z1 ·
√
ql−122

(
cl−112 z1 +

√
1− (cl−112 )2z2

))
=

√
ql−111 ql−122 ·

(
cl−112 E(z21) +

√
1− (cl−112 )2E(z1z2)

)
= ql−112 since

√
ql−111 ql−122 · c

l−1
12 =

√
ql−111 ql−122

ql−112√
ql−111 ql−122

= ql−112

(c) What are the allowed values of cl12?

Solution
We can see from the first definition, given at the beginning of the problem, that −1 ≤ cl12 ≤
1.

(d) It turns out that the recurrence relation you derived above always has a fixed point at c∗ = 1.

Show this analytically, and then argue why you could have arrived at this result
without any calculation.
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Solution
First we show it analytically. If c∗ = 1, then the variables u1 and u2 become

u1 =
√
q∗z1

u2 =
√
q∗z1

(there is no z2 anymore). This gives the expression

σ2
w

∫
R
Dz1Dz2φ

(
z1
√
q∗
)2

+ σ2
b . (12)

The random variable z2 integrates to 1, and so we are left with

σ2
w

∫
R
Dz1φ

(
z1
√
q∗
)2

+ σ2
b . (13)

This is exactly the expression which defines q∗, and since we divide by q∗ to get the corre-
lation coefficient, this shows that the correlation coefficient fixed point is unity.
Second, we argue without any calculation. c∗ = 1 means that the pre-activations cor-
responding to both inputs are exactly the same. Clearly this cannot be changed by the
network, i.e. if we feed it the same input, we get the same output. So perfect correlation is
always maintained by the network.

(e) Once you have arrived at the above recurrence relation, note that you have a dynamical system
which determines the value of ql12 in terms of ql−112 , ql−111 , and ql−122 . You know from the previous
problem, however, that ql−111 and ql−122 converge to fixed points. Though you’ll have to take it on
faith for now, it turns out that the convergence of these values to their fixed point happens quickly
(compared to the dynamics of ql12), so it is a reasonable approximation to just replace ql−111 and
ql−122 with q∗. Then, we have

cl12 ≈
1

q∗
C
(
cl−112 , q∗, q∗|σw, σb

)
Now let’s examine the stability of the fixed point c∗ = 1. To do this, as before, we look at the
derivative of the recurrence relation, i.e. dcl12/dc

l−1
12 , evaluated at the point c∗ = 1. We will call

this quantity χ. It can be shown that

χ = σ2
w

∫
R
Dz
[
φ′(
√
q∗z)

]2
(14)

If you want, prove the above relation. Since this is just algebra and not too instructive,
feel free to skip this part.

Solution Directly differentiating the integral definition of cl12 with respect to its input, we
have

∂cl12
cl−112

= σ2
w

∫
R
φ′(u1)φ′(u2)Dz1Dz2

where u1, u2 are defined as in part (b). Applying the chain rule and then integrating by
parts, we can simplify this integral to

χ ≡ ∂cl12
cl−112

= σ2
w

∫
R
Dz
[
φ′(
√
q∗z)

]2
as desired.
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Problem 5: Connection between χ and exploding/vanishing gra-
dients

In the previous problem, we saw that a unit correlation coefficient (the highest value which is allowed)
is a fixed point under evolution through the neural network. However, it was not always stable. The
stability depended on whether the quantity χ, defined as the derivative of dcl12/dc

l−1
12 , is greater or less

than 1. In this problem, we want to understand the connection between the quantity χ and exploding
or vanishing gradients.

A starting point to understand the connection between χ and gradients is to consider what it means
for the fixed point c∗ = 1 to be stable or unstable. If χ > 1, and the fixed point c∗ = 1 is thus unstable,
then two input vectors which are highly correlated will de-correlate as they are processed by the network.
Conversely, if χ < 1, then two vectors will become more correlated as they are processed. Thus it seems
like if χ > 1, space is stretched, while if χ < 1, space is contracted. In this problem we find that χ is
precisely the factor by which space is streched or contracted by each layer of the neural network.

(a) Start by considering a plain linear transformation, y = Jx, where x and y are vectors and J is a
matrix.

Averaged over all possible directions in which x can point, what is the ratio of the
squared length of y to that of x, in terms of the singular values of J?

Solution
The length of y is given by the square root of yTy, where

yTy = xTJTJx (15)

Even though the matrix J might not admit an eigendecomposition, the matrix JTJ does,
so we can express it as

JTJ =
∑
i

λiviv
T
i , (16)

where λi and vi are the ith eigenvalue and eigenvector of JTJ. Then

yTy =
∑
i

λi(x
Tvi)

2 (17)

Without loss of generality we can consider x to have unit length and calculate the expecta-
tion of the squared length of y. Averaged over all the possible directions of x:

〈yTy〉 =
∑
i

λi〈(xTvi)
2〉 (18)

The squared projection of x onto a vector vi will average to 1/N , where N is the dimension
of the vector. So we find that 〈yTy〉 is given by the mean eigenvalue of JTJ. Since the
eigenvalues of JTJ are squared singular values of J, the squared length increases by the
mean squared singular value of J.

(b) Consider the transformation enacted by layer l of a neural network,

hl = W lφ(hl−1) + bl. (19)

Let D be a diagonal matrix whose entries are Dii = φ′(hl−1i ).

In terms of W l and D, what is the Jacobian of the transformation hl−1 7→ hl?

Solution
Since hli =

∑
j W

l
ijφ(hl−1j ),

∂hli
∂hl−1j

= W l
ijφ
′(hl−1j ). (20)

Thus the Jacobian is simply given by the product of W l and D.
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From the problem above, we want the mean-squared singular value of the Jacobian.
Show that this mean-squared singluar value is exactly equal to the expression for χ
calculated earlier, when we take the expectation with respect to the distribution of
the weight matrix and the distribution of the pre-activations.

Solution The singular values are the eigenvalues of JTJ, so the mean squared singular
value is 1

N tr
(
JTJ

)
= 1

N tr(DlW l). Of course, since W and D are random matrices, this is

a random variable; we want E
(

1
N tr(DlW l)

)
. D is a diagonal matrix with entries φ′(hl−1i );

as N becomes very large and we make the mean-field approximation wherein the weighted
combination of the entries of D by i.i.d. random Gaussian variables becomes integration
against the Gaussian measure, we have

χ = σ2
w

∫
R
φ′
(√
q∗ρ
)
Dρ

as desired (where Dρ is the standard Gaussian measure).

(c) How does the value of χ relate to exploding and vanishing gradients?

Solution
If χ > 1, we saw from the above problem that perturbations get magnified as they go
through a layer, and if χ < 1, we saw that perturbations get shrunk as they go through a
layer. So the regime in which χ > 1 corresponds to the regime of exploding gradients, while
the regime in which χ < 1 corresponds to vanishing gradients.

(d) To emphasize that χ is a function of σw and σb, we go back to the expression for χ,

χ = σ2
w

∫
R
Dzφ′(

√
q∗z)2, (21)

and explicitly write the dependence of the fixed point q∗ on σw and σb. Remember that this
dependence can be written implicitly via the equation

q∗ = σ2
w

∫
R
φ
(
ρ
√
q∗
)2

dρ+ σ2
b . (22)

Numerically calculate the value of χ for several values of σw and σb, for the hyper-
bolic tangent nonlinearity. Make a contour plot, and specifically indicate the curve
corresponding to χ = 1

14



Solution
The following Python code should work:

import numpy as np
import s c ipy . i n t e g r a t e as i n t e g r a t e
import s c ipy . opt imize as opt imize

def gauss ian ( x ) :
return np . s q r t (2 ∗ np . p i ) ∗ np . exp (−0.5 ∗ x∗∗2)

def in tegrand ( x ) :
return np . tanh ( x ∗ np . s q r t ( q ))∗∗2 ∗ gauss ian ( x )

def q s t a r ( s t a r t i n g q , sigma w , sigma b ) :
def i n t e g r a l ( q ) :

return sigma w ∗∗2 ∗ i n t e g r a t e . quad ( integrand , −np . in f , np . i n f ) [ 0 ] + sigma b ∗∗2
return opt imize . f i x e d p o i n t ( i n t e g r a l , s t a r t i n g q )

def ch i ( sigma w , sigma b ) :
q = q s t a r ( 0 . 7 , sigma w , sigma b )
# D e r i v a t i v e o f h y p e r b o l i c tangent i s h y p e r b o l i c secant .
return sigma w ∗∗2 ∗ i n t e g r a t e . quad (

lambda x : 1 / np . cosh ( x ∗ np . s q r t ( q ))∗∗2 ∗ gauss ian ( x ) ,
−np . in f , np . i n f )
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