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1 Introduction

An Ordinary Differential Equation (ODE) is an equation of the form

y(t) = £(t,y(t)) (1)
y(0) = yo
where f : [T, 7] x R™ — R" is a continuous function and yp € R™ an initial value. We call

solution a continuous map t — y(t) defined in a neighborhood of ¢ = 0 satisfying equations .
A standard result tells us that if f is uniformly Lipschitz (i.e. ||f(¢t,y) —f(¢,y)] < Llly — x||)
in a neighborhood of (0,yy), then a solution exists and it’s unique (cfr. [1], Theorem 12.1).
This results can be proven by constructing a solution in an iterative way. Equation is
equivalent to its integral form

y(®) = y(0) + /0 (s, y(s)) ds

If we define the functions yg = yo and

yN(t) =yo+ /0 (s, yw(s)) ds

for N > 0, then one can use the Lipschitz property of f to show that yyi1 converge
uniformly on a neighborhood of ¢ = 0 to a continuous function. In particular, calling

y(t) = limy_ o0 YN (), we get that

y(t) = lim yy(t)
t
=yo+ lim / f(s,yn(s))ds
N—oo 0
t
ZyO+/ f(s, lim yn(s))ds
0 N—oo
t
=yo+/ f(s,y(s))ds
0

This means that y(¢) is thus the solution to our ODE. Unfortunately, this is not a viable
method to evaluate the solution numerically.



2 One-step methods

A simple way to approximate the solution to numerically comes from numerically approx-
imating its derivative. By definition
. . t+h)—y(t
o(0) =ty YD) =3 (D)
h—0

Therefore, if we choose h sufficiently small, we have that

y(t) ~ Y(t—i_hf)b_y(t) (2)

Plugging this into the equation (1)), we get

y(t+h) =y(t)+hf(t,y(t))

Now, suppose we want to compute an approximation y(7') of y(7T) at time T" > 0. We
can break the interval [0,7] into N intervals, and find approximations y(0) = y(0) and
Yn =y (tn) = y(tn), where t,, = nh, h = T/N. Using the above formula, we can find y,, by
the recurrence
yn-&-l = yn + hf(tn’ S’n)

Intuitively, we expect this to be a good approximation to the actual solution if A is small
enough (or equivalently, N is large enough). This method is known as Explicit Euler. Other
methods can be derived in the same way, starting from a formula to approximate the derivative
of a function.

2.1 A simple example

We can start to understand how well different methods work by looking at a simple example
(see also the Colab notebook] to implement and play with a similar example). Consider the
ODE

y(t) = —100y(t)

y(0) =1
In this case we know the exact solution: y(t) = e~ 100

2.1.1 Forward Euler’s method

Let’s look at how the solution given by Explicit Euler looks like. We have that
U1 = yo — 100h yo = (1 — 100h)yo
g1 = f1 — 100k §; = (1 — 100h)§1 = (1 — 100h)>yo

Iterating, we see that it holds g, = (1 — 100h)™y9. How good is this as an approximation to
the true solution? Call K(h) = (1 — 100h). If K(h) < —1 (or equivalently i~ > 0.02) then it
easy to see that the solution diverges as n increases, which is the opposite behavior of y(t)!
Moreover, if K(h) < 0 (or equivalently A > 0.01) the solution keeps oscillating around 0, while
we know that the actual solution is always positive. Only for h < 0.01 our approximation
starts to resemble the behaviour of y(t).


https://colab.research.google.com/drive/1bNg-RzZoelB3w8AUQ6mefRQuN3AdrIqX#scrollTo=POlK5dJCdcAb

2.2 Backward Euler’s method

The Implicit Euler’s method iteration is given by

Qn-{-l = @n + hf(tm gn+1)

is formula can be derived from equation y choosing h < 0). Re-arranging, for the
this f 1 be derived f ion (2)) by choosing h < 0). R ing, for th
considered example one finds

gn = (14 100h)"yo

We can notice that this method does not have the same issues as the Explicit Euler’s method:
the approximation behaves as the actual solution even for larger h’s.

2.3 Trapezoidal method

The trapezoidal method iteration is given by

ﬁ[f(tny gn) + f(tna gn—i-l)}

Qn—‘rl :gn'i_ 9

Re-arranging, for the considered example one finds

. (1-50h "

= \1+s0n)
We see that in this case g, — 0 as n — oo for any value for h, but if iggz <0 (i.e. h > 0.02)
the approximation oscillates around 0.

3 Convergence analysis

Which of the different methods works best? To understand this, one needs to quantify the
error due to the approximation of the ODE. We consider a generic one-step method, i.e. which
can be written as

Unt1 ="Yn +h q>(tm (s h)

for some function ¢ depending on f.

3.1 Truncation error

The first error we define is the one due to the use of the approximation at one time step.
It is called truncation error:

Tn = w - (I)(tmymh)

where y, = y(t,) is the actual solution. Let’s try to get an explicit bound for the Euler
method. We have

NI, = Yn+1 — Yn — hf(tnayn)

Subsisting y,+1 with its first order Taylor approximation, we get

Yn+l = Yn + hyn + O(hQ) =Yn + hf(tmyn) + O(h2)



which gives
hT, = O(h?)

Therefore T,, = O(h) goes to 0 as h — 0. In general, a method such that

T(h) = max |T,|] =0
0<n<T/h

as h — 0 is said consistent.

3.2 Convergence

The error at time ¢, is given by e, = y,—7,. The total error is given by e(h) = maxo<,<7/slen|.
We say that the method converges if e(h) — 0 as h — 0. We can see that if ® is (uniformly)
Lipschitz and the method is consistent, then it is also convergent. Indeed, we have that

ent1 = Yn +h®(tn, yn, h) + b1y — Gn — h ®(tp, Yn, h)
=en + h(P(tn, yn, h) — ®(tn,Yn, h)) + hT,
< en + hL(Yn — Gn) + +h T
<(1+hL)e, +hT,

(1+hL)*e, 1 +h(1+hL)T, 1 +hT,

IN N

IN

(1+RL)™eg+h > (1L+hL) T,
=0

It follows that

T/h
e(h) < hT(h)) (1+hL)
=0
(1 — (14 hL)T/H)
1—-1—hL
(1 + RL)T/m —1)

= hT(h)

Therefore, convergence holds if the method is consistent. Moreover, the order of consistency
dictates the speed of convergence.
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