
1 - Ordinary Differential Equations 1

Scribed by Tinghao Li, Luca Venturi

1 Introduction

An Ordinary Differential Equation (ODE) is an equation of the form

ẏ(t) = f(t,y(t)) (1)
y(0) = y0

where f : [−T, T] × Rn → Rn is a continuous function and y0 ∈ Rn an initial value. We call
solution a continuous map t 7→ y(t) defined in a neighborhood of t = 0 satisfying equations (1).
A standard result tells us that if f is uniformly Lipschitz (i.e. ‖f(t,y)− f(t,y)‖ ≤ L‖y− x‖)
in a neighborhood of (0,y0), then a solution exists and it’s unique (cfr. [1], Theorem 12.1).
This results can be proven by constructing a solution in an iterative way. Equation (1) is
equivalent to its integral form

y(t) = y(0) +

∫ t

0
f(s,y(s)) ds

If we define the functions y0 ≡ y0 and

yN+1(t) = y0 +

∫ t

0
f(s,yN (s)) ds

for N ≥ 0, then one can use the Lipschitz property of f to show that yN+1 converge
uniformly on a neighborhood of t = 0 to a continuous function. In particular, calling
y(t) = limN→∞ yN (t), we get that

y(t) = lim
N→∞

yN (t)

= y0 + lim
N→∞

∫ t

0
f(s,yN (s)) ds

= y0 +

∫ t

0
f(s, lim

N→∞
yN (s)) ds

= y0 +

∫ t

0
f(s,y(s)) ds

This means that y(t) is thus the solution to our ODE. Unfortunately, this is not a viable
method to evaluate the solution numerically.

1

2 One-step methods

A simple way to approximate the solution to (1) numerically comes from numerically approx-
imating its derivative. By definition

ẏ(t) = lim
h→0

y(t + h)− y(t)

h

Therefore, if we choose h sufficiently small, we have that

ẏ(t) ' y(t + h)− y(t)

h
(2)

Plugging this into the equation (1), we get

y(t + h) ' y(t) + h f(t,y(t))

Now, suppose we want to compute an approximation ŷ(T) of y(T) at time T > 0. We
can break the interval [0, T] into N intervals, and find approximations ŷ(0) = y(0) and
ŷn = ŷ(tn) ≈ y(tn), where tn = nh, h = T/N . Using the above formula, we can find ŷn by
the recurrence

ŷn+1 = ŷn + h f(tn, ŷn)

Intuitively, we expect this to be a good approximation to the actual solution if h is small
enough (or equivalently, N is large enough). This method is known as Explicit Euler. Other
methods can be derived in the same way, starting from a formula to approximate the derivative
of a function.

2.1 A simple example

We can start to understand how well different methods work by looking at a simple example
(see also the Colab notebook to implement and play with a similar example). Consider the
ODE

ẏ(t) = −100 y(t)

y(0) = 1

In this case we know the exact solution: y(t) = e−100t

2.1.1 Forward Euler’s method

Let’s look at how the solution given by Explicit Euler looks like. We have that

ŷ1 = y0 − 100h y0 = (1− 100h)y0

ŷ1 = ŷ1 − 100h ŷ1 = (1− 100h)ŷ1 = (1− 100h)2y0

Iterating, we see that it holds ŷn = (1− 100h)ny0. How good is this as an approximation to
the true solution? Call K(h) = (1 − 100h). If K(h) < −1 (or equivalently h > 0.02) then it
easy to see that the solution diverges as n increases, which is the opposite behavior of y(t)!
Moreover, if K(h) < 0 (or equivalently h > 0.01) the solution keeps oscillating around 0, while
we know that the actual solution is always positive. Only for h < 0.01 our approximation
starts to resemble the behaviour of y(t).

2

https://colab.research.google.com/drive/1bNg-RzZoelB3w8AUQ6mefRQuN3AdrIqX#scrollTo=POlK5dJCdcAb

2.2 Backward Euler’s method

The Implicit Euler’s method iteration is given by

ŷn+1 = ŷn + hf(tn, ŷn+1)

(this formula can be derived from equation (2) by choosing h < 0). Re-arranging, for the
considered example one finds

ŷn = (1 + 100h)−ny0

We can notice that this method does not have the same issues as the Explicit Euler’s method:
the approximation behaves as the actual solution even for larger h’s.

2.3 Trapezoidal method

The trapezoidal method iteration is given by

ŷn+1 = ŷn +
h

2
[f(tn, ŷn) + f(tn, ŷn+1)]

Re-arranging, for the considered example one finds

ŷn =

(
1− 50h

1 + 50h

)n

y0

We see that in this case ŷn → 0 as n→∞ for any value for h, but if 1−50h
1+50h < 0 (i.e. h > 0.02)

the approximation oscillates around 0.

3 Convergence analysis

Which of the different methods works best? To understand this, one needs to quantify the
error due to the approximation of the ODE. We consider a generic one-step method, i.e. which
can be written as

ŷn+1 = ŷn + hΦ(tn, ŷn, h)

for some function Φ depending on f .

3.1 Truncation error

The first error we define is the one due to the use of the approximation (2) at one time step.
It is called truncation error:

Tn =
yn+1 − yn

h
− Φ(tn, yn, h)

where yn = y(tn) is the actual solution. Let’s try to get an explicit bound for the Euler
method. We have

hTn = yn+1 − yn − hf(tn, yn)

Subsisting yn+1 with its first order Taylor approximation, we get

yn+1 = yn + h ẏn + O(h2) = yn + h f(tn, yn) + O(h2)

3

which gives
hTn = O(h2)

Therefore Tn = O(h) goes to 0 as h→ 0. In general, a method such that

T (h) = max
0≤n≤T/h

|Tn| → 0

as h→ 0 is said consistent.

3.2 Convergence

The error at time tn is given by en = yn−ŷn. The total error is given by e(h) = max0≤n≤T/h|en|.
We say that the method converges if e(h)→ 0 as h→ 0. We can see that if Φ is (uniformly)
Lipschitz and the method is consistent, then it is also convergent. Indeed, we have that

en+1 = yn + hΦ(tn, yn, h) + hTn − ŷn − hΦ(tn, ŷn, h)

= en + h (Φ(tn, yn, h)− Φ(tn, ŷn, h)) + hTn

≤ en + hL(yn − ŷn) + +hTn

≤ (1 + hL)en + hTn

≤ (1 + hL)2en−1 + h(1 + hL)Tn−1 + hTn

≤ · · ·

≤ (1 + hL)n+1e0 + h

n∑
i=0

(1 + hL)iTn−i

It follows that

e(h) ≤ hT (h)

T/h∑
i=0

(1 + hL)i

= hT (h)
(1− (1 + hL)T/h)

1− 1− hL

= T (h)
((1 + hL)T/h − 1)

L

≤ T (h)
eTL

L

Therefore, convergence holds if the method is consistent. Moreover, the order of consistency
dictates the speed of convergence.

References

[1] Endre Süli and David F Mayers. An introduction to numerical analysis. Cambridge
university press, 2003.

4

	Introduction
	One-step methods
	A simple example
	Forward Euler's method

	Backward Euler's method
	Trapezoidal method

	Convergence analysis
	Truncation error
	Convergence

