
3 - ResNets

Scribed by Manikanta Srikar Yellapragada, Luca Venturi

1 ResNets

In standard (feedforward/convolutional) neural networks, each layer process the input xk

(which is the output of the k-th layer), by applying an affine transformation defined by a
weight-bias couple (Wk,bk) and a non-linear function ρ (tipically applied component-wise),
as follows:

xk+1 = ρ(Wkxk + bk)

xk+2 = ρ(Wk+1xk+1 + bk+1)

· · ·

In a Residual Network (ResNet), skip-connections are introduced (cfr. (He et al., 2016a)):

xk+2 = xk + ρ(Wk+1xk+1 + bk+1)

This consists in nothing but adding the (unprocessed) output from a previous layer to the
output of the current one. Of course, one can think at many variants of such architectures
and many have been proposed. In general we could think to ResNets as networks of the form

x̂k+1 = f(xk) + F(Wk,xk)

xk+1 = h(x̂k+1)

In a simple ResNet f is taken to be the identity; in standard neural networks, f ≡ 0. ResNet
aroused from the difficulty of training very deep networks. Indeed, while from an approxi-
mation point of view deeper networks perform not-worse than their shallower counterpart, in
practice, it has been found difficult to train very deep networks (without residual connections)
and get better performances.

Question: Show that a k-layer (feedforward) network can be written as (k + 1)-layer net-
work, if the activation function is non-negative.

Notice that this is very easy to show for a ResNet: indeed, by taking Wk ≡ 0 (and
f = h = id), one gets xk+1 = xk . Therefore, in some sense, it is easier to approximate
the identity transformation with a ResNet w.r.t. a standard neural net. While it is unlikely
that identity mappings are going to be optimal, the authors who first introduced residual
architectures suggested that this could be a reason why such reformulation may help to

1

precondition the training problem. The authors of (He et al., 2016b) also noticed that, by
taking a neural net of the form

xk+1 = xk + F(Wk,xk) = · · · = xk−l +

k∑
i=k−l

F(Wi,xi)

and with L layers, the derivative of a loss function E = E(xN) w.r.t. the output of the k-th
layer is given by

∂E
∂xk

=
∂E
∂xL

∂xL

∂xk

=
∂E
∂xL

(
1 +

∂

∂xk

L∑
i=k

F(Wi,xi)

)

Therefore, as noted in (He et al., 2016b), the gradient ∂E
∂xk

can be decomposed into two additive
terms: a term of ∂E

∂xL
that propagates information directly without concerning any weight

layers and another of ∂E
∂xL

∂
∂xk

∑L
i=k F(Wi,xi) that propagates through the weight layers. The

additive term of ∂E
∂xL

ensures that information directly propagated back to any shallower unit
k. It also suggests that it is unlikely for the gradient ∂E

∂xk
to be canceled out for a mini-batch

and therefore that the ResNets formulation alleviates the problem of vanishing gradients.
Of course, these are some very heuristic explanations, and while many other justifications

have been proposed, we are still far from a full understanding of why this should help.

1.1 Lesion study and ResNets as an ensemble

The authors of the paper (Veit et al., 2016) proposed an unravelled view of residual networks.
The input data can be seen as flowing along many paths from input to output, where each
path is a unique configuration of which residual module to enter and which to skip. Consider
a graph on G = (V,E), where the vertices V = J0, LK correspond to the layers (where L is the
number of layers) and two edges ei1, ei2 go from layer i − 1 to layer i; edge ei1 correspond to
the input flowing through residual module F(Wi, ·) and edge ei2 correspond to skipping the
residual module. The final output of the residual network can be therefore seen as a sum of
an exponential (2L) number of nested terms.
The authors of (Veit et al., 2016), inspired by this view of residual networks, conducted lesion
experiments to understand whether such paths are strictly dependent or rather behave as
an ensemble. After training the network, they looked at the increase in testing error when
removing or reordering some layers during test time. Surprisingly the error shows very little
increase when changing only a few connections; moreover, the error that correlates smoothly
with the amount of corruption of the architecture. This could seen as a validation of the
idea that ResNets behave more as ensemble, even when trained jointly. The number of paths,
when removing one connection, decreases from 2L to 2L−1, leaving half of the paths valid, and
could explain the small increase in testing error. Different lesion studies were also conducted
in the papers (Chang et al., 2017).

2

2 ResNets as Explicit Euler steps and stability

Consider a simple residual net where the layer outputs are propagated as

xk+1 = xk + f(xk,θk)

If we multiply f by some (small) constant h > 0, we get

xk+1 = xk + hf(xk,θk)

which looks exactly as an Explicit Euler step for an ODE of the form

ẋt = f(xt,θt) (1)

for some map θt. This simple observation suggested new residual architectures motivated by
properties of dynamical system. For example, a simple desirable property could be for the
solutions of the ODE not to explode (i.e. diverge) as t → ∞, but instead belonging to a
bounded set. This is ensured by (cfr. (Haber and Ruthotto, 2017)) θt changing sufficiently
slow and by the Jacobian Jt

.
= ∇xf(xt,θt) satisfying

max
i

Re(λi(Jt)) ≤ 0

We saw in the second lecture how the corresponding stability property for the explicit Euler’s
method is ensured by

max
i
|1 + hλi(Jk)| ≤ 1

where Jk = ∇xf(xk,θk). Equivalently, a network with Re(λ(J)) > 0 corresponds to a network
which amplifies a signal, that, for long time propagation, would diverge; on the other hand,
a network with Re(λ(J)) � 0 would decay the signal exponentially; this could be useful in
some part to decay high order oscillation, but having too much signal loss may be harmful.
In the papers (Chang et al., 2018; Haber and Ruthotto, 2017) the authors look therefore for
architectures where the condition Re(λ(J)) ' 0 holds. Consider the case of transfomations

f(x,θ) = ρ(Wx+ b)

(where θ = (W,b) and ρ(x) is a non-decreasing activation function), then

J(x) = ∇xf(x,θ) = diag(ρ̇(Wx+ b))W

Notice that, if W is anti-symmetric
WT = −W

then it holds Re(λ(W)) = 0, and the same thing hold for J, since ρ̇ ≥ 0. Such a condition can
be easily imposed by taking Wk = Kk −KT

k , where Kk is the trainable parameter. Another
possibility is to take (

xk+1

zk+1

)
=

(
xk

zk

)
+ hρ

((
0 Kk

−KT
k 0

)(
xk

zk

)
+ bk

)
where zk is an additional propagating variable (with z0 = 0). Other variants include consid-
ering different numerical schemes to approximate the ODE (1) or architectures inspired by
Hamiltonian systems (see (Haber and Ruthotto, 2017; Chang et al., 2018)).

3

2.1 Reversible networks

Some residual networks are reversible: the output at layer k + 1 can be used to evaluate the
output at layer k. While this is a property that could be useful e.g. in generative modeling,
such property was noticed in (Gomez et al., 2017), where the authors used this idea to improve
(memory) efficiency. Indeed, if the network is reversible, outputs of intermediate layers need
not be stored for backpropagation. Assume for example that the output of the network at
layer k + 1 is given by (xk+1, zk+1), where

xk+1 = xk + F(zk)
zk+1 = zk + G(xk+1)

Then we can get (xk, zk) given (xk+1, zk+1) as

zk = zk+1 − G(xk+1)

xk = xk+1 −F(zk)

Question: Consider the network above with F(z) = αz and G(x) = βx (as in (Chang et al.,
2018)). Is this network stable (in the sense of Section 2)?

We have that

xk+1 = xk + αzk

zk+1 = zk + βxk+1

xk = xk−1 + αzk−1

zk = zk−1 + βxk

Subtracting the third equation from the first equation above, we have

xk+1 − xk = xk − xk−1 + αzk − αzk−1
xk+1 − xk = xk − xk−1 + αβxk

xk+1 − (2 + αβ)xk − xk−1 = 0

As we saw in the second lecture, for the above propagation to be stable we need the roots
of the polynomial p(x) = x2 − (2 + αβ)x − 1 to be bounded (in absolute value) by 1. This
simple example already sheds lights on the difficulties of designing architectures with a set of
desired properties.

References

Chang, B., L. Meng, E. Haber, L. Ruthotto, D. Begert, and E. Holtham
2018. Reversible architectures for arbitrarily deep residual neural networks. In Thirty-
Second AAAI Conference on Artificial Intelligence.

4

Chang, B., L. Meng, E. Haber, F. Tung, and D. Begert
2017. Multi-level residual networks from dynamical systems view. arXiv preprint
arXiv:1710.10348.

Gomez, A. N., M. Ren, R. Urtasun, and R. B. Grosse
2017. The reversible residual network: Backpropagation without storing activations. In
Advances in neural information processing systems, Pp. 2214–2224.

Haber, E. and L. Ruthotto
2017. Stable architectures for deep neural networks. Inverse Problems, 34(1):014004.

He, K., X. Zhang, S. Ren, and J. Sun
2016a. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, Pp. 770–778.

He, K., X. Zhang, S. Ren, and J. Sun
2016b. Identity mappings in deep residual networks. In European conference on computer
vision, Pp. 630–645. Springer.

Veit, A., M. J. Wilber, and S. Belongie
2016. Residual networks behave like ensembles of relatively shallow networks. In Advances
in neural information processing systems, Pp. 550–558.

5

	ResNets
	Lesion study and ResNets as an ensemble

	ResNets as Explicit Euler steps and stability
	Reversible networks

